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1. Introduction 

The brushless direct-current motor (BLDCM) is a 

synchronous motor with permanent magnets on the rotor and 

stator winding. In the future, it must develop motor controllers 

for engineering applications through simple and economical 

design. The BLDCM can be expanded to an operation speed 

range more than the base speed using Artificial Intelligence 

Technique (AI). It is necessary to use a controller that can 

improve the performance of the three-phase BLDC motor. The 

speed response of the BLDCM system with control units PID 

can be tuned effectively by optimizing the parameters of the 

PID controller using artificial intelligence algorithms. in recent 

years, DC motors have become increasingly popular due to 

their advantages such as extensive speed control and high 

efficiency. However, commutators and brushes might be 

considered a significant drawback of such motors due to the 

ongoing deterioration of these parts, which ultimately 

increases safety risks and maintenance costs. However, 

Brushless BLDC motors have provided a solution to this 

problem. Several studies have been conducted on optimizing 

BLDC motor design using electric circuits instead of 

commutators and brushes [1, 3]. In comparison to induction 

motors and brushed DC motors, BLDC motors have a number 

of benefits. The stability of the drive will be aided by features 

like a long service life, quiet operation, high efficiency, high 

dynamic response, wide speed range, low temperature, and the 

capacity to withstand shock and vibration [4, 5]. The control 

algorithm for this motor is more complex than that for other 

types of engines since it uses electronic commutation. In order 

to obtain a comprehensive and exquisite control strategy for 

the BLDC motor, an accurate model is necessary. As a result, 

the motor model serves as the brain of the control drive [6]. An 

example of a synchronous motor is a (BLDC) motor, which 

has permanent magnets on the rotor and stator winding. It is 

commonly utilized in instruments, hard drives, robotics, cars, 

and aircraft [7]. Single-phase, two-phase, and three-phase 

BLDC motors are the three different varieties. Three-phase 

motors are the most common and widely used. In terms of 

torque-current characteristics and torque-speed characteristics, 

BLDC motors are similar to DC motors. The rotor moves or 

rotates due to a moving magnetic field, similar to AC motors 

[8]. A permanent synchronous motor with rotor position 

feedback is known as a BLDC motor. Typically, a three-phase 

power semiconductor bridge is used to drive it. Instead of 

employing brushes to commutate the BLDC motor, its three-

phase inverter uses the position of the rotor as feedback. The 

rotor's position is necessary for the motor to start and to 

provide the correct sequence of commutation to regulate the 

power devices in the inverter bridge. The motor comprises a 

stator winding fed by rectangular stator currents and has a 

permanent magnet rotor that generates trapezoidal back-EMF 

waves and, theoretically, constant torque. The BLDC motor's 

operation is established by the inverter's phase switching when 

it turns two phases ON simultaneously while the rest phase 

floats. The two phases are successively energized and changed 

every 60 degrees depending on the rotor position [6, 9]. The 

(Inrunner) and (Outrunner) are the two main categories of 

BLDC motors. The two types' structures are depicted in Figs. 

1 (a) and (b). Inside the fixed component of the in-runner 
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motor are permanent magnets. This type is superior to the 

(Outrunner) type in situations where high speed is required. 

Applications requiring low torque and high speed typically 

utilize this kind. Although they spin less slowly, (Outrunner) 

motors provide more torque. This kind is a quitter for 

applications requiring strong torque and low speed [8, 10, 11]. 

 

Fig. 1 BLDC motor types, (a) In-runner, (b) Out-runner [10], [11]. 

Stators in BLDC motors have axially cut slots along the 

inner perimeter of the stacked steel laminations. The stator 

windings of the motor of a BLDC are arranged in a star or delta 

pattern. Stators are linked in a star arrangement in the majority 

of BLDC motors. These windings are made up of many 

coupled coils. Forming a winding involves putting a coil in a 

slot and connecting it to another coil as shown in Fig. 2 [10]. 
Stator windings can be divided into two types: trapezoidal and 

sinusoidal motors. This differentiation is established to 

provide the diverse forms of back electromotive forces. It is 

based on the stator windings; coils are interconnected (EMF). 

A trapezoidal motor's back EMF is generated in a trapezoidal 

manner, and that of a sinusoidal motor is sinusoidal, as their 

names suggest. The matching kinds show sinusoidal and 

trapezoidal variations in the phase current, as does the motor's 

back EMF. For this reason, the torque output of a sinusoidal 

motor is smoother than that of a trapezoidal motor. But this 

comes at an extra expense since sinusoidal motors need more 

winding connections because of the way the coils are 

distributed around the perimeter of the stator, which increases 

the amount of copper that enters the stator windings. having 

the ability to choose a motor depending on the control power 

supply capacity that has the proper stator voltage rating. 

Robotics, small arm motion, and other fields use motors rated 

for 48 volts or less in their operations. Motors rated at 60–100 

volts or above are used in industrial applications, automation, 

and appliances [12]. 

 

Fig. 2 Stator structure of a BLDC motor [10]. 

Magnet materials and pole pairs make up the rotor. The right 

magnetic material to utilize to achieve the necessary magnetic 

field density in the rotor is determined by that need. Permanent 

magnets are often created using ferrite magnets. Due to their 

high magnetic density magnets made of rare earth alloys are 

large in becoming more and more common.  Although ferrite 

magnets are less costly than alloys, one disadvantage is that 

they have a low flux density for the volume in question. On the 

other hand, rare earth alloy materials boost the motor's size-to-

weight ratio and output a lot of torque for a motor of a 

comparable size. Some rare earth magnet alloys that have 

gained popularity recently include neodymium, ferrite, and 

boron (NdFeB). In order to compress the rotor even further, 

research is being done to increase the flux density. Figure 3 

displays the cross-sections of many magnet configurations 

inside a rotor. There are various cross-sections for the rotor 

magnet [8], [12], [13]: 

1. Magnets are positioned around a circular core. 

2. Rectangular-shaped magnets are attached to a circular core 

embedded in the rotor. 

3. Rectangular magnets attached to a circular core are inserted 

into the rotor core. 

 

 
 

Fig. 3 Magnet rotor cross sections [14]. 

 
One of the crucial elements to increase a product's viability 

is system efficiency. Due to improvements in materials and 

design, the Brushless DC Motor's cost has decreased since it 

was first introduced. DC motor that is brushless is a popular 

part in many different applications due to its lower price as 

well as the several benefits it offers above the DC Brush 

Motor. Utilized is the brushless DC motor for a variety of 

purposes, including but not restricted to [11], [15]: 
 

1. Instruments, and appliances equipment medical. 

2. Transportation. 

3. Equipment for Factory Automation. 

4. Military. 

5. Aerospace. 

Lenz's Law states that every coil in a BLDC motor 

generates a voltage known as the reverse electromotive force, 

or back emf, which is in opposition to the coil's primary 

voltage. This voltage is known as the trapezoidal shape of the 

back phase EMF in a PMBLDC motor and its relationship to 

speed (Wm) and rotor position angle (θe). The construction of 

(bemfs) depends on three different factors, the rotor's angular 

speed, the magnetic field it generates, and the stator windings' 

number of turns. In BLDC motors, the rear emf has a 

trapezoidal form, unlike the sinusoidal shape of the back emf 

in PMSM. Different background EMFs are produced by 

BLDC motors and PMSMs depending on the physical 

conditions, the logic behind how the stator windings is 

coupled, and the winding. The differences between a BLDC 

motor and a PMSM are displayed in Table 1. Every motor has 
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a 3-phase balanced voltage with a 120-degree angle that 

separates each component from the back emf. Figures 4 and 5 

show the back emf in PMSM and BLDC motors, respectively 

[8], [16]. 

 
Table 1. compares the differences between PMSM and BLDC motors. 

 

No. Feature PMSM BLDC 

1 Back emf 
Sinusoidal back 

emf 

Trapezoidal back 

emf 

2 
Flux density  

(in space) 
Sinusoidal 

distributions 
Square distribution 

3 Stator current Sinusoidal wave Square wave 

4 Total power Constant Constant 

5 
Electromagnetic 

torque 
Constant Constant 

6 Energized phases 
Three phases are on 

at any time 
Two phases are on 

at any time 

 

 
 

Fig. 4 Back-emf of PMSM motor [17]. 

 

 
 

Fig. 5 Back-emf BLDC motor [17], [18]. 

 
All of these systems are mechanical and electrical because 

of their rapid dynamics and instability, they share the 

characteristic of feedback to the variable to be manipulated, 

usually position or speed, in order to change the command 

signal. However, a three-phase inverter with rotor position 

feedback must energize the stator coil of the BLDC motor in 

order to turn it on. In order for the motor to start and provide 

the correct switching sequences to operate a rotor position 

sensor is needed for the bridge inverter's power device. To 

choose which coils to activate, it's critical to comprehend the 

rotor's position. The position of the rotor is determined using a 

variety of techniques. In order to implement these strategies, 

the following strategies must be used [8], [12]. 

1. Hall sensor technology. 

2. Background electromotive force detection technology. 

3. Speed estimation technique. 

In this research, the background EMF detection technology 

uses a Sensorless control method. Traditional PID control with 

simple closed-loop speed control methods is the control 

technique that control applications employ the most 

frequently, and if the parameters are recreated correctly, it can 

work stably with the majority of electronics. However, the 

biggest drawback of a PID controller is how difficult it is to 

implement gains in a perfect loop. This unit controls the 

system, its energy, and its dynamic regime [8], [19]. The 

technique used in this paper is described below. 

For back EMF trapezoidal synchronous permanent magnet 

motors, proper phase current is essential. Any phase errors in 

the switching signals result in signals that cannot provide 

pulsating torque and increased copper loss in the BLDC motor. 

In this paper, back-emf and zero-cross point detection circuits 

are used for rotor position estimation and provide approaches 

utilizing zero-sensor detection of BLDC motor line voltages. 

With the proposed methods, the three-phase line voltage of a 

BLDC motor must be measured independently [20]. EMF 

detection technology at the back causes the third coil of the 

BLDC motor to float, leaving only two phases operating at any 

given moment. The electromagnetic field at the back is 

reduced using a floating coil, and a concept detection system 

is presented. The float coil terminal voltage is monitored to 

ensure that the back emf exceeds zero with respect to the 

neutral point voltage. Back EMF voltage is the name given to 

the neutral point of the motor. By comparing the terminal 

voltage to the neutral point, the neutral back emf can be 

determined. The neutral point of the engine is often 

unavailable. The most common approach is to create a virtual 

neutral point, which will theoretically have the same Y-turn 

capability as the engine, and then look for any differences [12], 

[21]. 

2. Operation principle of brushless DC motor 

A brushless DC motor, which is classified as a permanent 

synchronous machine with rotor position feedback, operates 

through a three-phase bridge inverter that drives the motor in 

sync with the rotor position. To achieve proper operation and 

initiate the motor, a rotor position sensor is required. 

Additionally, this sensor is responsible for delivering the 

accurate commutation sequence, which subsequently activates 

the power devices in the inverter bridge. The commutation of 

these power devices occurs progressively every 60 degrees, 

contingent upon the rotor position. It's crucial to remember that 

this motor falls under the category of electronic motors, as it 

utilizes electronic commutation to switch the armature current 

instead of relying on traditional brushes. This design choice 

significantly enhances the durability of the brushless DC 

motor when compared to its DC motor counterpart, as it 

effectively eliminates common issues associated with the 

brush and commutator arrangement, such as sparking and 

brush wear-out. The implementation of the ideal speed control 

regarding the brushless DC a motor may observed in Fig. 6, 

showcasing the practical application of this advanced motor 

technology [16], [22]. 
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Fig. 6 Implementation of optimized speed control for BLDC motor. 

The basic block diagram of a brushless DC motor is shown 

in Fig. 7. The four main parts of a brushless DC motor are the 

power inverter, sensors, control algorithms, and permanent 

magnet synchronous machine (BLDC). 

 

 

Fig. 7 three-phase inverter of BLDC motor drive [23]. 

Power is transferred from the source to the BLDC motor 

by the power inverter, which then translates electrical energy 

into mechanical energy. One of the best advantages of the 

brushless DC motor is the sensors for rotor position. The 

control algorithms choose the gate signals for each 

semiconductor in the power electronic inverter based on the 

rotor position and command signals, which might be torque, 

voltage, speed, or other instructions [16]. 

The BLDC motor runs in a two-phase-ON mode, during 

each commutation sequence, as illustrated in Fig. 3, the first 

winding is energized with positive power, signifying that the 

current enters the winding. In contrast, the second winding is 

energized with negative power, indicating that the current 

departs the winding. Simultaneously, the third winding 

remains floating, as exemplified in the diagram. The interplay 

between the magnetic fields generated by the stator coils and 

the magnetic field within the rotor magnet serves as a signal to 

each semiconductor within the power electronic inverter as 

shown in Fig. 8. This signal ultimately gives rise to the torque 

when the two phases are energized [24]. 

The main stage of power conversion is the inverter bridge, 

and the direction, speed, and torque that the motor produces 

are controlled by the switching patterns of the power devices. 

Bipolar or, more frequently, power MOS devices can be used 

as power switches. It is also feasible to use systems with mixed 

device inverters, such as those that use MOSFETs for the low-

side switches and p-n-p Darlington’s for the high-side power 

switches. The switching frequency of an inverter can range 

from 3 kHz to 20 kHz and higher [25]. 

 

 

Fig. 8 The inverter circuit where phase A to phase B the currents flow [26]. 

3. Conventional PID control 

The need to increase productivity imposes new 

requirements on mechanisms related to electric drives in most 

industrial processes, such as those in the development sites, 

paper, petroleum, electrical, mechanical, iron and steel, and 

construction industries. They cause a variety of operational 

challenges due to their unstable and rapid dynamics. The most 

crucial step in utilizing a PID controller is parameter setup. 

Most of the engineering convenience nowadays is provided by 

self-tuning PID controllers. The value of PID controllers 

comes from their broad application to the majority of control 

systems. Even if they don't always offer the best control, PID 

control systems have been shown to be beneficial high-

resolution systems [12], [27]. The usual form of the typical 

PID control law is: 

𝑢(𝑡) = 𝑘𝑝. 𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝑡). 𝑑𝑡 + 𝑘𝑑
𝑑𝑒(𝑡)

𝑑𝑡
   

𝑡

0

                      (1) 

As a proportional gain, Derived gain Kp, Kd is the integral 

income, and e(t) is the error in derivatives [28], [29]. Tuning 

PID Controller Parameters in the industrial community, PID 

controllers with simple structures and reliable performance are 

frequently used. In this case, the proportion (P) plus integration 

(I) plus derivation (D) must be set, to have an impact on the 

PID controller's performance. For example, the improvement 

of the transient response with the PD controller may 

occasionally be hampered by the decrease of the steady-state 

error with the PI controller, and vice versa. Over-designing the 

controller for the system's steady-state error or transient 

response will therefore lead the accounting system to 

additional costs or other design problems. The manual trial-

and-error method has historically been used to optimize PID 

controllers, which makes the processing time and labor 

intensive [8]. Block representation of a conventional PID Fig. 

9 depicts the controller. 

 

 

Fig. 9 Traditional PID controller. 
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The importance of optimization parameters or the 

outcomes of an operation used as input to the optimization 

algorithm are both described by the mathematical concept 

known as the objective function. The PID controller is used to 

decrease error signals and to choose a preferred alternative that 

will be applied with all optimization techniques to obtain a 

smaller error. Calculating the objective function yields: 

𝐼𝑆𝐸 = ∫ 𝑒2(𝑡)𝑑𝑡                                                                          (2) 

Where, ISE is the Integral square error fitness value, the 

control output, or time error signal, is denoted by u(t), and the 

error between the measured process output variable and a 

desired set point is represented by e(t). 

4. Grey wolf optimization-based PID controller 

In 2014, gray wolves were proposed by Mirjalili et al. using 

calculations representing social male gray wolves. The social 

hierarchy will appear, and the structure of this group will be 

determined by Fig. 10 [30], [31], [32]. 

 

 

Fig. 10 Grey wolf hierarchy descending dominance [33]. 

This algorithm uses a hunting strategy to find and pursue 

prey (solution). There are three essential phases to hunting: 

1. Tracking, pursuing, and approaching the target. 

2. Circumnavigating the prey and moving it to stop it from 

moving. 

3. pursuing the prey and taking it by force. 

Four Groups, Beta, Delta, and Omega-are established in 

this algorithm, the gray wolves, are known to live in packs, the 

design phase seeks to reflect and replicate the complex social 

system observed within this species. With a hierarchical 

structure as an organizational framework, wolves serve as a 

great model for developing solutions. At the forefront of these 

solutions is Alpha, which represents the highest rank, while 

Beta and Delta occupy the next two positions in second and 

third places, respectively. However, the remaining substituents 

are considered relatively less important and are therefore 

classified under the term omega. This classification 

underscores the idea that these options have a decreasing 

degree of importance within the larger framework of the 

design phase [30], [34]. 

Figure 11 illustrate the method and style designed for 

hunting in addition, grey wolves' social hierarchy to model the 

style is the mathematical model that will represent GWO and 

its use in improving performance [35]. 

 

Fig. 11 Grey wolf hunting behavior is depicted in (A) approaching prey, (B) 

stalking, (C) harassment, (D) encirclement, and (E) attack state [30]. 

The prey tends to diverge from potential solutions when 

|A|>1 and move in defining the prey's direction when |A|<1 as 

shown in Fig. 12 [30]. 

 
                           (a)                                                       (b) 

Fig. 12 (a) converge when |A|<1, (b) diverge when |A|>1. 

Grey wolves circle their prey while hunting, as was already 

mentioned. To represent encircling behavior analytically, 

equations provided are as follows [36]: 

( ) ( )PD C X t X t= −                                                     (3) 

( 1) ( ) .PX t X t A D+ = −                                                 (4) 

In addition, the iteration, prey position, and grey wolves 

are all indicated by the (t) symbol. Moreover, the coefficient 

vector can be computed in the manner described below [33], 

[37]: 

1 2 3, ,X X X                                              (5)  

22C * r=                                                                               (6)

2 2
max_

t
a

iter
= −                                                           (7) 

Where,  

D ⃗: A grey wolf's distance is defined by these terms. 

A ⃗, C ⃗: Coefficient vectors are referred to by these terms. 

r1 and r2 are randomly chosen between one and zero and their 

values range from A decrease of 2 to 0. 
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In this case, it is feasible to clarify neighbors in Fig. 13 

using a two-dimensional location vector in order to understand 

the impacts of Eqns. (3) and (4). Grey wolves are in position 

(X, Y), as seen in Fig. 13 (a). Its location can be changed in 

accordance with the prey's position (X*, Y*). By changing the 

value and vectors, it is possible to attain the best agents for the 

given situation in a number of locations. When the 3D grey 

wolf spot is updated, as shown in Fig. 13 (b), grey wolves can 

alter their location inside the area surrounding their prey using 

Eqns. (3) and (4) [38], [39]. 

 

Fig. 13 Position vectors in 2D and 3D and their possible future locations [39]. 

Groups that hunt cooperatively, there will be three wolves 

leading the pack, and there are three wolves, which are called 

the leaders. who typically possess the most professional and 

practical expertise, as well as possibly the most trustworthy 

information on the precise location of (best) perspective in 

order to catch prey and engage in a well-organized hunt. As 

shown in Fig. 14. 

 

Fig. 14 Update on Wolf's position [31]. 

The wolves will then be led, they should update their 

positions based on the new information discovered locations 

of the leaders. Based on eq. (4) to (7), the updated laws of 

places are as follows [38]: 

1

2

1

.

.

.

α α

β β

δ δ

D C X X

D C X X

D C X X

= −

= −

= −

                                     (8)   

 

1

2

3

.( )

.( )

.( )

1 α α

2 β β

3 δ δ

X X - A D

X X - A D

X X - A D

=

=

=

                                                       (9) 

1 2 3
( 1)

3

X X X
X t

+ +
+ =                                          (10) 

Where, 

𝐴1
⃗⃗⃗⃗⃗, 𝐴2

⃗⃗ ⃗⃗⃗, and 𝐴3
⃗⃗ ⃗⃗⃗ define the coefficient vectors and 𝐶1

⃗⃗⃗⃗⃗, 𝐶2
⃗⃗⃗⃗⃗, 𝐶3

⃗⃗⃗⃗⃗, 

Prey location and position 𝑋𝛼
⃗⃗ ⃗⃗ ⃗, 𝑋𝛽

⃗⃗ ⃗⃗ ⃗, 𝑋𝛿,
⃗⃗ ⃗⃗ ⃗⃗  Grey wolves' position �⃗�, 

Grey wolves' distances 𝐷𝛼
⃗⃗⃗⃗⃗⃗ , 𝐷𝛽

⃗⃗ ⃗⃗ ⃗, 𝐷𝛿
⃗⃗ ⃗⃗ ⃗, Grey wolves and their 

positions 𝑋1
⃗⃗⃗⃗⃗, 𝑋2

⃗⃗⃗⃗⃗,  𝑋3
⃗⃗ ⃗⃗ ⃗⃗  . 

A flowchart diagram of detection and updating using the 

parameters and equations indicated in Fig. 15 can be used to 

illustrate the GWO technique. 

 

Fig. 15 Adaptive GWO algorithm flowchart [38]. 

5. Neural network-based PID controller design 

A brushless motor, being an inherently non-linear system, 

presents a challenge in obtaining an optimal response of a 

BLDC motor using conventional linear control methods. As a 

result, conventional PID controllers are considered insufficient 

due to the nonlinear nature of the brushless motor model, 

necessitating the development of alternative control methods. 

This paper deals with the performance and accuracy 

requirements for implementing a BLDC motor position 

control system by combining a PID controller utilizing a neural 
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network created artificially, and a position control system for 

BLDC motors has been developed based on an internal 

backpropagation neural network, and the PID parameters are 

set accordingly. The present work presents a PID neural 

network architecture designed for a BLDC driver [40]. 

A comprehensive investigation will be conducted on the 

BLDC motor's performance under the suggested control 

scheme, taking into account various effects of changes in 

speed and torque. Furthermore, PID neural control is examined 

in-depth and compared with conventional PID and Gray Wolf 

Optimization techniques. 

The motor control mechanism for the BLDC is an intricate, 

nonlinear, system with multiple variables that provide flexible 

and adaptable capabilities. The use of intelligent controllers for 

BLDC motors has gained significant interest in recent years. 

One such method is neural control, which utilizes Artificial 

Neural Networks (ANNs) to control the system based on the 

system's dynamic behavior. This approach is very appropriate 

for adaptive control systems where the control unit must adapt 

to changes in the system's behavior. In this study, ANN was 

employed to build a BLDC motor speed control inverse model 

[41]. 

The resulting inverse model was then utilized as a console 

to create the BLDC motor's speed control mechanism. The 

suggested controller can withstand disturbances and changes 

in the system's properties. The study also emphasizes how 

crucial it is to have a thorough model of the BLDC motor in 

order to create an effective control system. The control system 

that has been suggested possesses the capability to be utilized 

in a vast array of industrial sectors, thereby signifying its 

versatility and potential for widespread implementation, such 

as robotics, electric vehicles, and aerospace systems. The 

utilization of a visual depiction regarding the necessary 

elements to execute the project effectively confirms the 

veracity of the speed control pertaining by the application of 

an artificial neural network to the BLDC motor [43], which 

can be observed in Fig. 16, which comprises a MATLAB-

designed Simulink block in the form of a schematic block 

diagram featuring multiple blocks. 

When utilizing neural networks to facilitate online 

optimization of PID control parameters, the approach is highly 

efficacious. The neural network receives the error (e), which is 

the difference between the actual and intended locations, and 

the speed (N) of the BLDC motor as input. The neural network, 

in turn, generates outputs pertaining to proportional, 

integrative, and derivative gain modification. 

 

Fig. 16 Block schematic of the neural network-powered brushless DC motor. 

Due to its late convergence rate and easiness of local 

minimum fallout, the traditional PID control approach can be 

less effective at times. Therefore, a created BP method was 

employed in this study. The goal of the current study was to 

successfully control the BLDC motor's rotor position utilizing 

a neural PID controller. The algorithm's training process 

convergence speed is excellent. Additionally, the trained BP 

neural network is highly adaptive and capable of self-learning 

[42]. Figure 17 provides a detailed illustration of the Neural-

PID controller for a BLDC motor drive. One control block, 

rotor position control-Xoff (voltage control), is included with 

this particular controller. 

 

Fig. 17 Neural-PID Xoff controller. 

In the PID neuron controller shown in Fig. 18, the rotor's 

position is controlled by the suggested controller, to obtain the 

traditional controller's settings, it is necessary to engage in a 

comprehensive analytical process, and adjust the output of the 

inverter (the output voltage that feeds the brushless motor), to 

ascertain the traditional controller's parameters and the 

inverter's output voltages, online, to determine the appropriate 

values for the stable operation of the brushless motor to 

achieve the actual speed at the output of the brushless motor, 

which corresponds to the required speed under varying loads 

and during any operating time and load. 

 

Fig. 18 Implemented Simulink model Neural-PID Xoff controller. 

The controller's neural network structure is composed of 

two input neurons, namely error (e) and speed (N), The 

changes in the PID controller's parameter gains, together with 

five hidden neurons and three output neurons, are shown in 

Fig. 19. 

 

 

Fig. 19 the structure of NN. 

 



116             H. J. Ali et al. / Basrah Journal for Engineering Sciences, Vol. 24, No. 1, (2024), 109-119                         

The said controller has the following inputs and outputs: 

Xi = [
𝑒
𝑁

]      and   yo = [
∆𝑘𝑝
∆𝑘𝑖
∆𝑘𝑑

]                                              (11) 

Where, the input vector of the neural network controller is 

represented by xi. 

The output vector a neural network controller is 

represented by 𝑦𝑜, which serves as a crucial component in the 

overall functioning of the system. 

The mathematical formulation delineating the neural 

network can be computed by utilizing the subsequent 

equations [43], as per scholarly conventions. 

S
𝐾
𝑗

  = ∑ 𝑊𝑗𝑖
𝐾  . 𝑋𝑖𝐾  + 𝑏𝑗

𝐾𝑛
𝑖=1                                                 (12) 

𝑦𝑗
𝐾 =

1

1+𝑒
−𝑆𝑗

𝐾                                                                       (13)                                                                       

𝑆𝑜
𝐾 = ∑ 𝑊𝑜𝐽

𝐾𝐾
𝑗=1 . 𝑦𝑗

𝐾 + 𝑏𝑜
𝐾                                                  (14) 

𝑦𝑜
𝐾 =

1

1+𝑒−𝑆𝑜
𝐾                                                                       (15)  

Where,  
The hidden layers' output is shown as 𝑦𝑗

𝐾 .    
The outputs of NN are 𝑦𝑜

𝐾                                              

𝑊𝑗𝑖 is the weight of the input neurons to the hidden neurons. 

𝑊𝑜𝑗 is the ratio of the hidden neurons' weight to the output. 

𝑏𝑗
𝐾 is the concealed layers' bias. 

𝑏𝑜
𝐾 is the output layers' bias. 

K is the present training set and K = 1: S 

S is the whole count of training sets. 

The Back-Propagation Algorithm, also known as BPA, is 

a well-known supervised learning technique used to train 

Artificial Neural Networks (ANNs). This approach is among 

the most prevalent forms of training methods utilized. BPA 

utilizes a gradient-descent optimization methodology, which is 

also known, when applied to feedforward networks, as the 

delta rule. A Multi-Layer Perceptron (MLP) is a feedforward 

network that has been trained using the delta rule [43]. 

The weights in this study are changed in the following 

ways using the delta rules equations of the BP algorithm: 

𝜕 = 𝑦𝑜
𝐾 . (1 − 𝑦𝑜

𝐾). (𝑑𝐾 − 𝑦𝑜
𝐾)                                              (16) 

𝜕ℎ = 𝑦𝑗
𝐾 ∗ (1 − 𝑦𝑗

𝐾) ∗ 𝑊𝑜𝑗
𝐾 ∗ 𝜕                                           (17) 

𝑊𝑜𝑗
𝐾+1 = 𝑊𝑜𝑗

𝐾 + 𝜕 ∗ ƞ ∗ 𝑦𝑗
𝐾                                           (18)   

𝑏𝑜
𝐾+1 = 𝑏𝑜

𝐾 + 𝜕 ∗ ƞ                                                            (19) 

𝑊𝑗𝑖
𝐾+1 = 𝑊𝑗𝑖

𝐾 + 𝜕ℎ ∗ ƞ ∗ 𝑋𝑖
𝐾                                                (20)  

𝑏𝑗
𝐾+1 = 𝑏𝑗

𝐾 + 𝜕ℎ ∗ ƞ                                                          (21) 

Where, 

 ƞ: the learning rate, set 0.5, is. 

𝜕: is the output neurons' delta rule. 

The hidden neurons' delta rule is represented by 𝜕ℎ. 

𝑑𝐾: is the output result of NN. 

The output is compared to the desired or goal output, and 

the following equation is used to determine the mean squared 

error at iteration k (ek): 

𝑒𝐾 = 0.5 ∗ (𝑑𝑜
𝐾 − 𝑦0

𝑘)2                                                         (22) 

Training is repeated for all (k) patterns, where k is the 

current set or pattern. Then, the following equation is used to 

calculate the cumulative mean square error (Ce): 

𝐶𝑒 = ∑
𝑆

𝐾 = 1
𝑒𝐾                                                                (23) 

The iterative process of training a neural network 

necessitates the repetition of the learning process for 

numerous cycles until the cumulative error reaches a 

sufficiently diminutive value. It is at this juncture that the 

training is deemed accomplished, and the altered weights are 

subsequently transferred to the BLDC motor neural network. 

This process involves the continuous refinement of the 

network's parameters, such as the weights and biases, by 

iteratively feeding the input data through the network and 

comparing the predicted outputs with the actual outputs. The 

aim is to minimize the error between the predicted and actual 

outputs, which is typically measured using a suitable loss 

function. Once the cumulative error reaches an acceptably low 

level, the training is considered complete, indicating that the 

neural network has learned the underlying patterns and 

relationships within the training data. The updated weights, 

which encapsulate the knowledge gained during the training 

process, are then applied to the BLDC motor neural network, 

enabling it to make accurate predictions or classifications 

based on new, unseen data.  

The algorithm architecture of the BPA learning program is 

depicted in Fig. 20 through the use of a flow chart. In this flow 

chart, the input data (𝑥𝑖) is presented as a vector with a number 

of rows equal to (S) and a number of columns equal to the 

number of input neurons. Conversely, the desired output data 

(d) is represented as a column vector with S rows.  

 

Fig. 20 Flow chart of the backpropagation training, adaptive [41]. 
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It is worth noting that this particular representation plays a 

crucial role in facilitating the understanding and 

implementation of the BPA learning program. By visualizing 

the input data and desired output data in this manner, 

individuals can more effectively grasp the concepts and 

mechanics underlying the BPA learning program. 

Furthermore, this flow chart serves as a valuable reference 

tool during the implementation phase, aiding programmers in 

accurately translating the algorithm into code. Overall, the 

inclusion of this flow chart enhances the accessibility and 

usability of the BPA learning program, making it easier for 

individuals to comprehend and apply its principles. Table 2 

and 3 show the advantages and disadvantages of the methods 

are used. 

Table 2. the advantages of the methods are used. 

Table 3. the disadvantages of the methods are used. 

 

To control the speed of BLDC motors, the choice between 

these methods depends on the specific application 

requirements. It depends on the available data and the desired 

trade-off between simplicity and adaptability. Combining 

these techniques or hybrid approaches may also improve 

performance. The most appropriate method for controlling the 

speed of a BLDC motor depends on a variety of factors. 

1. Artificial neural networks (ANN) can provide an enhanced 

level of adaptability and performance for a system if its 

behavior is complex and non-linear and sufficient training 

data is available. 

2. Gray Wolf Optimization (GWO) is an excellent choice if 

you are interested in optimizing and tuning parameters as 

well as reducing the amount of implementation work. 

3. PID (Proportional Integral Derivative) controls can be an 

ideal solution if you need a simple and well-established 

control method that responds quickly to changes in the 

desired application. 

6. Conclusion  

Ultimately, the best way to achieve the desired 

performance requirements will depend on the characteristics 

of your system, the availability of data, and the specific 

performance requirements you are trying to achieve. For 

optimal performance, combining the strengths of different 

methods can also be considered as a hybrid approach, 

maximizing the strengths of each method. 

It has been concluded that the artificial neural network 

(ANN) is one of the most promising methods for controlling 

the speed of BLDC motors. Artificial neural networks provide 

a powerful solution for neural systems within the motor 

system due to their ability to adapt to complex, nonlinear 

relationships within the system, as well as their ability to learn 

from data as they grow. 

Although artificial neural networks require large training 

data to perform well, the associated computational load makes 

them a compelling choice for applications that require high 

adaptability and accuracy in motor control, despite the need 

for large training data. 
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